Author Archives: jarotzena

Zientziapp eta Mintzatu

ZIENTZIAPP

Zientzia-edukiak euskaraz edonon eta edonoiz eskura izateko lehen aplikazioa da ZIENTZIAPP
Aplikazioak zientzia-eduki berriak eskainiko ditu egunero: zientzia eta teknologiari buruzko azken albisteak, bideoak eta audio-artxiboak, informazioa nonahi eta noiznahi jasotzeko, nahieran.
Eduki guztiak Elhuyar Zientzia erredakzioan aukeratu eta landuko dira. Zientzia.eus webgunean ere argitaratuko dira.
Horrez  gain, zientzia eta teknologiaren inguruko ekitaldiaren berri ere emango du, Agendaren bitartez.
Diseinu garbia eta erraza du, eta doan deskarga daiteke Google Play Storen zein App Storen.
Deskargatu aplikazioa eta izan zientzia eta teknologiari buruzko berritasunak, esku-eskura!

MINTZATU

Euskararen etxeak mezu hau bidali du:

“Aurten, zorion mezu arrunt bat baino, proposamen bat egin nahi dizugu 2017ra begira.
Zer deritzozu erronka batean elkarrekin parte hartzeari ?

Mintzatu, euskaraz  hitz egiten dugun tokiak identifikatu, eta horien berri emateko sarea da, eta guztiok elikatu ahal dugu: euskaraz egiten dugun toki horiek zein diren adierazi, horien berri eman, sustatu…
Une honetan, ia 1.300 leku daude etiketatuta “Mintzatu”n, mundu osoan zehar.
2017rako, berriz, erronka bat proposatu nahi dizuegu:
Guztion ekarpenei esker, baietz datorren urte bukaerarako 5.000 leku etiketatuta egon!
Lagunduko gaituzu ? Guztion artean lortuko dugu !”

Basoen biodibertsitatea aberasgarria da, zentzu guztietan

Inoiz egin den zuhaitzen inbentario handiena bildu dute nazioarteko ikerketa batean. Ondorioztatu dutenez, basoak espezieen aldetik zenbat eta anitzagoak izan, orduan eta azkarrago eta gehiago hazten dira zuhaitzak, eta beraz, egurrari merkatuan ateratzen zaion etekina ere handiagoa da. Ekonomiaren terminologia aplikatuta, biodibertsitateari eusteak superabita dakar.

Ekologiaren ikuspegitik, basoen biodibertsitateak duen garrantziaz ez dago zalantzarik. Baina baten batek horrekin nahikoa ez badu, ekonomiari dagokionez ere bada aberasgarria, nazioarteko ikerketa zabal batean egiaztatu berri dutenez. Izan ere, espezie anitzeko zuhaitzak dituzten basoak azkarrago eta gehiago hazten dira; beraz, biomasa handiagoa da, eta horietan ekoizten den egur kantitatea ere bai. Hala azaldu dute, Science aldizkarian argitaratutako artikuluan.

Global Forest Biodiversity Initiative izeneko ekimenak orain arte egin duen lan garrantzitsuenaren emaitza da hau. Basoen ikerketan jarduten duen sare handienetakoa da, eta berrogei herrialde baino gehiagotako kideak ditu. Ikerketa Mendebaldeko Virginiako eta Minnesotako unibertsitateek (AEB) eta Herbehereetako Ekologia Institutuak koordinatu badute ere, hamarnaka erakundetako laurogei ikertzailetik gora daude artikuluaren sinatzaileen artean.

biodibertsitatea-768x511
Irudia: Espezie anitzeko zuhaitzak dituzten basoak azkarrago eta gehiago hazten dira. (Argazkia: Dario Di Gallo, Friuli Venezia Giulia Forest Service)

Inoiz egin den zuhaitzen inbentario handiena bildu dute lan honetarako. Hain zuzen, 770.000 lursaildik gora aztertu dituzte, eta hala, 30 milioi zuhaitz eta 8.700 espezie baino gehiagori buruzko informazioa jaso. 44 estatutako baso ekosistema nagusi guztiak hartu dituzte kontuan; klima eta kondizio bereziki esanguratsuak dituzten asko, tartean. Esaterako, Siberiakoak, Patagoniakoak, Errusiako Oimyakon eskualdekoak (hotzenak), Ozeaniako Palau artxipelagokoak (beroenak) eta Brasilgo Bahia eskualdekoak (anitzenak).

Datu horiek guztiak bildu, eta orain arte zuhaitzen biodibertsitatean izan den bilakaera hartu dute kontuan. Hala, deforestazioa dela, edo klima aldaketa dela, zuhaitz espezieen aniztasunak behera egiten duenean, basoen produktibitatea ere murriztu egiten dela ondorioztatu dute. Egin dute kalkulua: zuhaitz biodibertsitatearen %10eko galerak haien produktibitatearen %3ko galera ere badakar, gutxi gorabehera. Are gehiago, gaur egun ditugun zuhaitz espezie guztiak izan beharrean, bakarra izango bagenu, nahiz eta zuhaitz kopurua berbera izan, basoei aterako litzaiekeen etekin komertziala %66 murriztuko litzateke.

Baina zuhaitz kopurua berbera bada, zer dela eta halako aldea? Bada, zuhaitz espezie bakoitzak modu desberdina darabilelako elikatu eta hazteko. Espezie bereko zuhaitzek lehiatu egin behar dute elkarren artean, denek bide bera baliatzen baitute bizirauteko baliabideak lortzeko. Espezieak desberdinak direnean, aldiz, traba gutxiago egiten diote elkarri, nork bere modua du aurrera egiteko, eta batak besteari kendu gabe, gehiago eta azkarrago hazten dira.

Iturria: Amaia Portugalzientziakaiera

Denon arbasoaren arrastoen atzetik

Organismo guztiek partekatzen dugun oso aspaldiko senidea da LUCA, edo azken arbaso komun unibertsala. Hark zituen 355 gene familia identifikatu ditu ikerketa talde batek, eta horietan oinarrituta, bere profila irudikatu: beroa eta hidrogenoa maite zituen eta oxigenoa gorroto zuen mikrobioa zen. Ezaugarri horiek eta beste zenbait kontuan hartuta, itsaspeko sumendien bueltan dauden tximinia hidrotermalen inguruan bizi izan zela uste dute.

Zer ari gara galdetzen, nondik gatoz galdetzen dugunean? Biologiaz ari al gara galdezka, ala fisikaz, ala filosofiaz? Ertz asko dituen auzia da. Bizitzaz, edo hobe esanda, guk ezagutzen ditugun bizitza formez ari bagara, LUCA da erantzuna:Last Universal Common Ancestor, edo azken arbaso komun unibertsala. Gaur egun gure mundu honetan bizi garen organismo guztiek partekatzen dugun oso aspaldiko senidea, gutxienez duela 3.500 milioi urte bizi izan zena. Baina arazoa zera da, LUCA erantzuteak galderak areagotu baino ez dituela egiten.

Nolakoa zen organismo hau? Non bizi zen? Eta nola? Horiei erantzun nahianDusseldorfeko Unibertsitatean egin duten ikerketa batek piztu du arreta berriki.Ustez LUCAk zeuzkan 355 proteina familia identifikatu dituzte, eta horietan oinarrituta, bere profila egin dute: beroa maite zuen mikrobioa zen, hidrogenoa funtsezkoa zuen, eta oxigenorik gabeko ingurunean bizi zen,Nature Microbiology aldizkarian argitaratutako artikulu batean azaldu dutenez. Garbi dago haren ondorengo askok eta askok beste bide batzuk hartu ditugula.

1. irudia: Bakterio eta arkeoetatik abiatu dira LUCAren balizko geneak identifikatzeko. (Argazkia: Madeline C. Weiss et al.)
1. irudia: Bakterio eta arkeoetatik abiatu dira LUCAren balizko geneak identifikatzeko. (Argazkia: Madeline C. Weiss et al.)

LUCA aurkitzeko, arkeologia lana egin behar da, bizitzaren historia luzea berreraiki. Eta horretarako organismo prokariotikoak dira abiapuntua. Animaliak, landareak, onddoak, bai eta legamiak ere, eukariotoak gara, organismo konplexuagoak; baina datuek diote prokariotoetatik sortuak garela guztiak, eta horregatik jo behar da horietara. Prokariotoak, aldiz, bi motatakoak izan daitezke: bakterioak edo arkeoak. Hain zuzen ere, bakterioak eta arkeoak bereizi izana, hori izan da bizitza formen bilakaeran gertatu den banaketarik sakonena. Horregatik, biek ala biek gene batzuk partekatzen badituzte, LUCAk ere gene horiek izango zituela pentsatzeak badu zentzua.

Ez da hain erraza, ordea. Bakterio batek eta arkeo batek gene bera izan dezakete erro beretik datozelako, baina gene transferentzia gertatu delako ere bai. Hizkuntzetan maileguekin gertatzen denaren parekoa da: euskarak baditu latinetik datozen hitzak (bakea, gela, zerua…) haren eragina izan eta transferituegin dituelako, baina ez dute jatorri bera. Orduan, nola bereizi bi organismoek LUCAtik oinordetzan jaso dituzten geneak, eta elkarri gerora kopiatu dizkiotenak?

Bada, bakterio eta arkeo espezie banak partekatzen dituzten geneak besterik gabe bilatu beharrean, irizpideak eta metodoa zorroztu dituzte. Gutxienez bi bakterio espeziek eta bi arkeo espeziek dituzten gene komunak identifikatu dituzte aurrena. 1.847 bakterioren eta 134 arkeoren genomak aztertu eta 6,1 milioi gene kontatu dituzte horrela, eta horiek guztiak 286.514 proteina familiatan multzokatu. Baina familia horien guztien artean, 355 baino ez daude gaur egungo organismo guztietan luze-zabal barreiatuta. 355 gene familia horiek dira, beraz, LUCAren parte izateko hautagai nagusiak.

2. irudia: Tximinia hidrotermala, Ozeano Atlantikoan. Halakoak izan zituen LUCAk balizko bizitoki. (Argazkia: P. Rona- NOAA Photo Library)
2. irudia: Tximinia hidrotermala, Ozeano Atlantikoan. Halakoak izan zituen LUCAk balizko bizitoki. (Argazkia: P. Rona- NOAA Photo Library)

“LUCAren fisiologia da. LUCA nola bizi zen ez ezik, non bizi zen ere esaten ari zaizkigu gene horiek”, dio William Martin ikerketaren arduradunak. Hala, gene horiek diotenez, LUCA anaerobioa zen (oxigeno askerik gabe bizi zen), karbono dioxidoa eta nitrogenoa ingurunetik hartu eta baliatu egiten zituen zuzenean, hidrogenoaren menpekoa zen, eta sufrea erabiltzeko ahalmena ere bazuen. Gainera, termofiloa zen, berrogei gradutik gorako tenperatura zuten inguruneetan bizi zen. Hori horrela, gaur egun gurean dauden izakien artean, badirudi Clostridium taldeko bakterioek eta arkeo metanogenoek dutela LUCArekin antz handiena.

Horiek guztiak kontuan hartuta, ikerketa honetan ondorioztatzen dutenez,badirudi LUCA ingurune hidrotermalen batean bizi izan zela, itsas hondoan; hidrogenoz, karbono dioxidoz eta burdinaz inguratuta. Hori dela eta, itsaspeko sumendien bueltan izaten diren tximinia hidrotermaletan kokatu dute bere balizko bizitokia, eta gaur egungo bizidun guztien abiapuntua.

Iturria: Amaia Portugal, Zientzia Kaiera

Lurrak lurra irentsi zuen

Eurasia eta Indiako plakek talka egin zutenean, bion gainean zegoen lurrazalaren masaren erdia galdu egin zela kalkulatu dute Chicagoko Unibertsitateko ikertzaile batzuek. Azalpen posible bakarra aurkitu diote desagertze horri: material hori guztia hondoratu egin zen, eta mantuarekin nahastu.

Duela hirurogei milioi urte inguru egin zuten talka Eurasia eta Indiako plaka tektonikoek. Lurrazalaren zati bat harrotu egin zen inpaktuarekin, eta ondorioz, Himalaia mendilerroa jaio. Beste zati bat, aldiz, mugitu egin zen bi plaken ertzeetan behera, eta hala sortu ziren gaur egungo Asia hego-ekialdeko lurraldeak. Baina hori izan al zen guztia?

Chicagoko Unibertsitateko (AEB) ikertzaile batzuk ezezkoan daude. Haien kalkuluen arabera, talkaren aurretik lurrazalak zuen masa askoz ere handiagoa zen; mendilerro, irla eta penintsula berriek hartu zutena baino handiagoa. Gainontzekoa ezin izan zen besterik gabe desagertu. Orduan, non dago? Zientzialariok argudiatu dutenez,Lurraren mantuak irentsi zuen lurrazalaren zati bat. Hala azaldu dute Nature Geoscience aldizkarian, sarean argitaratutako artikulu batean.

himalaia-640x323
1. irudia: Plaken arteko talkak mugiarazi zuen lur masaren zati handi bat Himalaia mendilerrora joan zen, baina beste zati handi bat desagertu egin zen lurrazaletik. (Argazkia: NASA)

Orain hirurogei milioi urte hor zegoen masaren erdia desagertu egin da lurrazaletik”, azaldu du Miquela Ingalls ikerketaren arduradunak. Datu hori ez dute arinkeriaz eman. Izan ere, batetik, berriki berrikusiak izan diren plaken mugimenduei buruzko estimazioak baliatu dituzte, denboran atzera egin eta talkaren aurretik bi plakek zer azalera zuten kalkulatzeko. Eta bestetik, Lurreko zenbait zonaldetako datu geologikoak aztertu dituzte, duela hirurogei milioi urteko lurrazalak zer lodiera zuen argitu nahian. “Funtsezko datu multzoak aztertuta, talkaren hastapenetan lurrazal zati horrek zer masa zuen zehaztu ahal izan dugu”, gaineratu du David Rowleyk, ikertzaileetako batek.

Halako masa kantitate handia galdu bada eta aurkitzen ez badute, mantuan behera hondoratu delako behar du izan, ikertzaileok artikuluan azaldu dutenez. Horrek orain arteko teoriak hankaz gora jartzen ditu, ordea. Izan ere, geologian irakasten denez, lurrazal kontinentalak dentsitate txikia du, eta horregatik, ezin du azpian duen mantuarekin nahastu. Hau da, teoria horri eusten badiogu, Eurasia eta Indiako plakek talka egin zutenean, astindutako lurrazalak ezingo zukeen hondoratu. Mantuaren gainetik geratuko zen, hondartzako baloiak ur azalean nola, inoiz behera egin gabe.

“Lurrazal kantitate handia desagertu da, eta mantuaren barruan baino ezin du egon.Pentsatzen genuen mantuak eta lurrazalak oso interakzio txikia zutela elkarren artean, baina lan honek iradoki bezala, egoera zehatz batzuetan behintzat, hori ez da hala”, dio Rowleyk.

ikerketa-taldea-640x375

Graduate student Miquela Ingalls, geophysical Professor David Rowley, and graduate student Albert Colman, in Rowley’s office, September 19, 2016. (Photo by Jean Lachat)

2. irudia: Miquela Ingalls, David Rowley eta Albert Colman, Chicagoko Unibertsitateko ikertzaileak. (Argazkia: Jean Lachat)

Duela hirurogei milioi urteko talka hark mugitu zuen masaren erdia Himalaiara, Asia hego-ekialdera eta itsas sedimentuetara joan zen, beraz; eta beste erdia, Lurreko arrakaletan behera. Hala iradokitzen dute artikulu honetan. Baina gainera, proposamen berri hau baliagarria da beste misterio geokimiko bat ere argitzeko.

Erupzioak gertatzen direnean, mantuak jaurtitzen dituen askotariko substantzien artean daude beruna eta uranioa, baina bi elementu horiek ez dira mantuaren berezko osagaiak. Nola liteke, orduan? Bada, lurrazalean bai, maiz aurkitzen dira beruna eta uranioa, eta artikulu honetan iradoki bezala, lurrazalaren eta mantuaren arteko interakzioa uste baino handiagoa bada, hor legoke galderaren erantzuna. Rowleyk adierazi bezala, “India eta Eurasiako plaken talka prozesu jarraitua bada [gure oinen azpian, oso poliki bada ere, mugitzen segitzen baitute], lurrazal kontinentaleko elementuak mantuarekin nahasten ari dira etengabe, eta horregatik, mantutik gaur egun ateratzen diren material bolkanikoetan ikus ditzakegu”.

Iturria: Amaia Portugal, Zientzia Kaiera

Karbono zuntzezko hondakinen % 100 birziklatzeko metodoa

Euskal Herriko Unibertsitateko Ingeniaritza Kimikoa eta Ingurugiroa Saileko ikertzaileek, karbono zuntzezko materialen hondakinen %100 birziklatzeko metodo bat patentatu dute.

hands-952510_1280
Irudia: Airbus eta Boeingen azken bi modeloen pisuaren % 50 baino gehiago karbono zuntzezko konpositezkoa da.

Gaur egun izugarri erabiltzen dira konpositeak edo karbono zuntzez osatutako materialak, besteak beste aireontziak, aerosorgailuen palak, kirol artikuluak eta automobilak fabrikatzeko. Izan ere, materialok metal askoren propietate oso antzekoak dituzte, eta, gainera, ez dira batere astunak. Hori dela eta, urte hauetan sekulako gorakada izan du material horien erabilerak. Merkatuko azterlan guztien arabera, hurrengo urteetan ia-ia esponentzialki egingo du gora konpositearen erabilerak.

Material horiek erabiliz gero, hondakinak sortzen dira; hondakinok hegazkinen, aerosorgailuen eta abarren osagaiak fabrikatzetik sor daitezke, edo materialen balio bizitza amaitzen denean ere bai (adibidez, karbono zuntzez osaturiko hegazkin zatiak birziklatzean).

Karbono zuntzezko konpositeen osagai nagusiak karbono harizpiak dira, erretxina batekin inpregnatuak eta aglomeratuak. Material horiek birziklatzea ez da batere erraza, hiru arrazoi nagusi direla azaltzen du Isabel de Marco ikertzaileak:

  1. “material gehien-gehienak erretxina termoegonkorrez osatuta daude, hau da, ez dira urtzen beroa aplikatuta, eta, beraz, ezin dira berriz moldatu”;
  2. “askotariko osagai ugariz osatuta daude (erretxina, zuntzak, betetzeko gehigarriak…)”;
  3. “nahasita egon daitezke, edo beste material batzuk eduki (metalezko tartekiak, film termoplastiko babeslea, pinturak, etab.)”.

Enpresa mundura bideratu nahian

Karbono hutsezko zuntza oso-oso garestia da merkatuan. Horregatik, zuntzak berreskuratzeko instalazio batzuk hasi dira eraikitzen, zuntz horiek birziklatu eta konposite berriak lortzeko asmoarekin, “baina oraindik ere ikertzen dabiltza”. Instalazio horietan, zuntzak erretxinatik bereizten dira prozesu termiko baten bidez (pirolisia). Zehazki, erretxina deskonposatu eta lurrunak eratzen dira; hala, zuntzak matrizetik aske gelditzen dira, eta berreskuratu egin daitezke. Fabrika horietan, erretxinaren deskonposizioak sortutako lurrunak errausketaren bitartez ezabatzen dira; haien balioa, beraz, ez da aprobetxatzen, eta horrek isuri kutsatzaileen arazoa ekartzen du.

UPV/EHUko ikertaldeak argitaraturiko patenteak metodo bat zehaztu du lurrun horiek tratatu eta hidrogeno proportzio handiko gas baliotsu bat lortzeko, eta, ondoren, konposatu hori bereizi eta saldu ahal izateko. “Hidrogenoa etorkizuneko erregaia izango da, ez duelako kutsatzen: hidrogenoa erretzean, ura baino ez da sortzen. Gainera, sintesi kimikorako erabil daiteke hainbat eta hainbat aplikaziotan”, esan du De Marcok.

Horrenbestez, metodo patentatu horri esker, erretxina polimerikoari balioa eman dakioke, eta ez soilik karbono zuntzezko erretxinari, gaur egun egiten den moduan. Beraz, metodo horrek gaur egungo teknika hobetuko du, eraginkorrago eta iraunkorrago eginda. “Metodoa hondakin konpositeak tratatzeko egungo fabriketan instala liteke, edo diseinu berrietan txertatu. Aurretik egin dugun balantze ekonomikoaren arabera, hidrogenoa eta berreskuraturiko karbono zuntzak saltzeko prezioak errentagarri bihurtzen du prozesua”, azaldu du Alexander Lopez-Urionabarrenecheak, ikerlanaren zuzendariak.

Patentea interesgarria izan daiteke, batetik, karbono zuntzezko konpositeekin fabrikaturiko materialak egiten dituzten enpresentzat, euren hondakinak kudeatzeko, eta, bestetik, hondakinak kudeatzen dituzten enpresentzat. “Patenteari diru etekina atera ahal izateko, are gehiago sakondu behar da laborategiko ikerketan, eta eskala aldaketaren inguruko azterlan bat egin. Taldea hasia da prozesuan interesa duen enpresa batekin hizketan”, adierazi du Lopez-Urionabarrenecheak.

Iturria: Zientzia Kaiera